The Vorarlberg Health Monitoring \& Promotion Programme (VHM\&PP)

(Preventive health care cohort in Vorarlberg)

 Emanuel Zitta ${ }^{\text {a,de }}$
${ }^{\text {a }}$ Agency for Preventive and Social Medicine (Arbeitskreis für Vorsorge- und Sozialmedizin), Bregenz, Austria
${ }^{\mathrm{b}}$ Institute of Epidemiology and Medical Biometry, Ulm University, Germany
${ }^{\text {c }}$ Institute of Medical Statistics and Informatics, Medical University of Innsbruck, Austria
${ }^{\text {d }}$ Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria

*contact:
wolfgang.brozek@aks.or.at
aks gesundheit GmbH
Rheinstr. 61, 6900 Bregenz, Austria

The Vorarlberg Health Monitoring \& Promotion Programme (VHM\&PP)

(Preventive health care cohort in Vorarlberg)

Datasets of health care programmes in Vorarlberg documented and managed by the Agency of Preventive and Social Medicine (Arbeitskreis für Vorsorge- und Sozialmedizin, aks gesundheit GmbH)

Basic idea:

Merge data of these programmes into one cohort containing information of at least the largest and most comprehensive programme for any member of the cohort. This largest programme accounting for the base dataset of the cohort is the General Health Examination (Allgemeine Gesundenuntersuchung) in Vorarlberg 1985-2005 (appr. 185,000 participants corresponding to $50-60 \%$ of the adult population, appr. 716,000 examinations)

Subcohorts (other, smaller programmes) add further examinations and variables

- „real" subcohorts: 100% participants of the General Health Examination (additive programmes dependent on the General Health Examination)
- intersecting subcohorts: <100\% participating also in the General Health Examination (programmes independent from the General Health Examination, but participation rate usually high)

Objective of the cohort:

Reveal risk factors for diseases, in particular cardiovascular and malignant diseases, for efficient and targeted public health-related planning and decision-making

The Vorarlberg Health Monitoring \& Promotion Programme (VHM\&PP)

Overview

(cf. Stöhr S. \& Klenk J. Systematische Aufarbeitung und Dokumentation der aks Daten. Kommentar zur Datenqualität. Master Thesis, Ulm University, 2004)

Intersecting subcohorts

Preventive gynaecological examination (1985-2005) 650,171 examinations in 117,400 women

General Health Examination: the base dataset

$>$ Documentation by aks Jan. $1^{\text {st }} 1985$ - June $30^{\text {th }} 2005$ (thereafter by Federation of Social Insurances = Dachverband der Sozialversicherungsträger)
> 716,679 examinations
> 185,397 participants aged ≥ 19 years, 53.9% female; $50-60 \%$ of adult population
> Socio-demographic data: age, sex, marital status, occupational status (blue collar, white collar, self-employed)
$>$ Body height, body weight, blood pressure (sys, dia), smoking status, blood glucose, serum uric acid, triglycerides, total cholesterol, gamma-GT, fecal occult blood
> only 1985-1986: dementia, alcohol abuse, status of stress, lack of physical activity
$>$ Closed dataset, however, permanently updated for survival and causes of death \rightarrow very long follow-up!

The Vorarlberg Health Monitoring \& Promotion Programme (VHM\&PP)

Subcohorts: additive programmes

Preventive programme
for ageing people
(,Demenz 2000", „VHM\&PP 65+")

\mathbf{n}	period	Age profile	\% female
3453	June 2000 - July 2001	≥ 65 years	58%

- Variables (by questionnaire):

Pre-existing diseases, medications, allergies, smoking, alcohol consumption, nutrition, bone fractures, various ailments (dyspnoea, insomnia, rheumatism, reduction of hearing and vision, vertigo); gynecological information asked from women (intake of hormones, pain and swellings of the breast, number of births, operations of the abdomen and breast); information on living situation and everyday life

Preventive programme for postmenopausal women (,Frauen Plus")

- HDL-cholesterol

\mathbf{n}	period	Age profile
5297	Jan. 1991 - Dec.	
women	2000	≥ 35 years

- Bone mineral density by DXA or QCT ($n=4750$)
- Questionnaire covering various topics: climacteric period, general satisfaction, vitality, cardiovascular risk, osteoporotic risk

The Vorarlberg Health Monitoring \& Promotion Programme (VHM\&PP)

Intersecting subcohorts (1)

Preventive gynaecological examination

\mathbf{n}	period	Age profile
117,400 women,	Jan. 1985 - June	
650,171 examinations	2005	≥ 15 years

- Various examinations documented (breast, uterus, vagina, vulva, ...), e. g. cervical swabs, inspection and palpation of the breast, inspection of the vulva, colposcopy, cytology

Mammography screening programme

\mathbf{n}	period	Age profile
53,223 women,	Jan. $1989-$ Dec.	
136,254 examination	2005	≥ 18 years

- Offered to all (female) participants of the General Health Examination and the Preventive gynaecological examination
- Mammography results; acquistion of breast cancer family history, operations of the breast, use of contraceptives, and breastfeeding

The Vorarlberg Health Monitoring \& Promotion Programme (VHM\&PP)

Intersecting subcohorts (2)

Skin cancer prevention

\mathbf{n}	period	Age profile	\% female
9382 participants,	Aug. 1989-		
12,069 examinations	Dec. 1994	≥ 13 years	61%

- Acquisition of risk for skin cancer, skin type

Colorectal cancer prevention

\mathbf{n}	period	Age profile	\% female
13,379 participants	$1992-2007$	$>=7$ Jahre	41%

- Family history of colorectal cancer, fecal occult blood, colorectal cancer risk (adenomas, colorectal cancer syndroms, ulcerative colitis, cancer familiy history)

The Vorarlberg Health Monitoring \& Promotion Programme (VHM\&PP)

Intersecting subcohorts (3)

Chronic diseases intervention

 programme ("CINDI" of the WHO)| \mathbf{n} | period | Age profile | \% female |
| :---: | :---: | :---: | :---: |
| 2401 (CINDI 1986), | 1986, | | |
| 2400 (CINDI 1991), | 1991, | $25-64$ years | 50% |
| 2794 (CINDI 1998) | 1998 | | |

- CINDI (Countrywide Integrated Non-communicable Diseases Intervention) programme of the WHO with the purpose of prevention of chronic diseases in 1986, 1991, and 1998
- Inquiries, additional acquisition of laboratory parameters
- Randomly selected participants aged 25-64 years with residency in Vorarlberg, same proportion females/males (representative random sample)
- All years: Socio-demographic variables (age, sex, marital status, occupation), physical activity, nutrition, smoking, alcohol consumption, information sources for health-related topics
- CINDI 1986: blood pressure (sys, dia), pulse, body height, body weight; serum uric acid, total cholesterol, gammaGT, blood glucose, HDL-cholesterol, triglycerides
- CINDI 1991: blood glucose, HDL-cholesterol, triglycerides; disease history (in particular, hypertension, cardiovascular disease, pulmonary disease, diabetes, malignant disease, urinary tract infection), medication history (analgesics, hypnotics, contraceptives, and other drugs)
- CINDI 1998: blood glucose, serum uric acid, triglycerides, total cholesterol, HDL-cholesterol, gamma-GT

The Vorarlberg Health Monitoring \& Promotion Programme (VHM\&PP)

Scientific publications

- >150 scientific publications in peer-reviewed journals since 2003 (up to April 2023) (cf. https://www.i-med.ac.at/msig/mitarbeiter/ulmer/vhmpp.html.de)
- Often combination with other datasets, registries, and cohorts, and part of multi-center studies (MCS):
$>$ National Mortality Registry (Statistik Austria) (follow-up, causes of death)
> Cancer Registry Vorarlberg
$>$ Coronary Angiography Cohort Vorarlberg (VIVIT [Vorarlberg Institute of Vascular Investigation and Treatment])
> Hip fracture dataset Vorarlberg (2003-2013)
$>$ Austrian Dialysis and Transplant Registry (ÖDTR)
$>$ Me-Can (Metabolic Syndrome and Cancer) (MCS)
$>$ ESCAPE (European Study of Cohorts for Air Pollution Effects) (MCS)
$>$ ELAPSE (Effects of Low-Level Air Pollution: A Study in Europe) (MCS)
$>$ NCD RisC (non-communicable diseases risk factor collaboration) (MCS)
> ERFC (emerging risk factors collaboration) (MCS)

The Vorarlberg Health Monitoring \& Promotion Programme (VHM\&PP)

Scientific publications_examples (1)

Ulmer H, Kelleher C, Diem G, Concin H. Long-term tracking of cardiovascular risk factors
among men and women in a large population-based health system: The Vorarlberg Health
Monitoring \& Promotion Programme. Eur. Heart J. 2003;24:1004-13.
\rightarrow Stability (tracking) of cardiovascular risk factors during a max. of 15 years:
\rightarrow BMI (body mass index) very stable
\rightarrow Triglycerides and gamma-GT not very stable, blood pressure fluctuating
\rightarrow Stable (vs. fluctuating) triglycerides and gamma-GT associated with higher
total mortality, more stable systolic blood pressure with lower total
mortality, both in women; no such effects in men

Association of γ-Glutamyltransferase and Risk of Cancer Incidence in Men: A Prospective Study
Alexander M. Strasak,' Kilian Rapp, Larry J. Brant,' Wolfgang Hilbe,' Martin Gregory,' Willi Oberaigner, Elfriede Ruttmann,' Hans Con
Hanno Ulmer' and the VHM\&PP Study Group

Strasak AM, Rapp K, Brant LJ, Hilbe W, Gregory M, Oberaigner W, Ruttmann E, Concin H, Diem G, Pfeiffer KP, Ulmer H. Association of γ-glutamyltransferase and risk of cancer incidence in men: a prospective study. Cancer Res. 2008;68:3970-7.

```
Elevated gamma-GT associated with increased cancer risk in men
-> In particular cancer of digestive, respiratory, and urinary organs
Marked dose-response effect
```


The Vorarlberg Health Monitoring \& Promotion Programme (VHM\&PP)

Scientific publications_examples (2)

Metabolic risk factors and primary liver cancer in a prospective study of 578,700 adults


```
$)
```


Intital studies have indicited diabetes and obesity to be isk factors for hepatocelluar carcinoma; but the association
between other metaboici risk factors and p pimayy liver cancer (PLC) has not been investisted. The metabolic sydran

Article

Repositioning of the global epicentre of non-optimal cholesterol

Borena W, Strohmaier S, Lukanova A, Bjørge T, Lindkvist B, Hallmans G, Edlinger M, Stocks T, Nagel G, Manjer J, Engeland A, Selmer R, Häggström C, Tretli S, Concin H, Jonsson H, Stattin P, Ulmer H. Metabolic risk factors and primary liver cancer in a prospective study of 578,700 adults. Int. J. Cancer 2012;131:193-200.

```
-> Me-Can MCS
```

\rightarrow Primary hepatic tumors (liver cancer) as endpoint
\rightarrow BMI, blood glucose, and MetS Index: positively associated with primary hepatic tumors
\rightarrow Total cholesterol inversely associated

> | NCD Risk Factor Collaboration. Repositioning of the global epicentre of non-optimal |
| :--- |
| cholesterol. Nature 2020;582:73-77. |
| \rightarrow NCD-RisC MCS |
| \rightarrow Total and non-HDL cholesterol decreasing since 1980 in Western |
| industrialized countries, also in Austria |
| \rightarrow Increasing in newly industrialized and low-income countries of South-East |
| Asia and Oceania (changing nutritional habits, restricted availability of statins) |
| \rightarrow Data for Austria in large part from VHM\&PP cohort |

The Vorarlberg Health Monitoring \& Promotion Programme (VHM\&PP)

Scientific publications_examples (3)

Strak M, et al. Long-term exposure to low level air pollution and mortality in eight European cohorts within the ELAPSE project: pooled analysis. BMJ 2021;374:n1904.
\rightarrow ELAPSE MCS (various European cohorts)
\rightarrow Long-term exposure to air pollution ($\mathrm{PM}_{2.5}, \mathrm{NO}_{2}$, black carbon) associated with increased mortality, even below current threshold values
\rightarrow Increase in mortality risk due to cardiovascular and respiratory diseases
$\rightarrow \mathrm{O}_{3}$ (probably) no risk factor

[^0]
The Vorarlberg Health Monitoring \& Promotion Programme (VHM\&PP)

Scientific publications_examples (4)

The Association of Excess Body Weight with Risk of ESKD Is Mediated Through Insulin Resistance, Hypertension, and Hyperuricemia

ABstract

 Methods We applied a modele for analysis of correlased mediators to populution based dita foom 100.269

ORIGINAL ARTICLE
Gamma-glutamyl-transferase is associated with incident hip fractures in women and men ≥ 50 years: a large population-based cohort study

Abstract
Summary The association of serum gamma-glutamyl-transfrase (GGT) with hip fracture risk has not been examined in GGT could be a candidate serum marker of long-term hip fracture risk in the elderly.
Introduction We hereien examined a possible relation between serum levels of GGT and hip fracture risk in women and men ged ≥ 50 years, which has not been investigated before.
participating in a medical prevention prosram $1955-2005$ in in western Austria werc fonlowed up for the occurrcence of ofose 0
 avaiable from al regional hospital. GGT-related hip fracture risk was ascertained at each participants's frist and dast examina
tion during the prevention program. In a subset of 5445 participants, alcohol consumption could be included as a covariae.
 and last examination, respectively, and in women, hip fracture risk rose by 22% from the last examination. Elevated $G G T$
≥ 36 UI
in women, ≥ 56 U
in men) $1.51,95 \%$ C I $1.25-1.82$) and at the last examination in both women (HR $1.14,95 \%$ C $1.02-1.28$) and men (HR $1.61,95 \%$ 1.33-1.95). Alcohol consumption had no significant influence on GGT-mediated hip fracture risk in women and men.
Onclusions Our findings identified an association of elevated GGT and hip facture in women and men ≥ 50 years and sus. Conclusions Our findings identified an association of elevated GGT and hip fracture in women

Fritz J, Brozek W, Concin H, Nagel G, Kerschbaum J, Lhotta K, Ulmer H, Zitt E. The association of excess body weight with risk of ESKD is mediated through insulin resistance, hypertension, and hyperuricemia. J. Am. Soc. Nephrol. 2022;33:1377-89.
\rightarrow Hypertension, insulin resistance, and hyperuricemia but not elevated total cholesterol mediate the risk association of excess body weight and endstage kidney disease

Brozek W, Ulmer H, Pompella A, Nagel G, Leiherer A, Preyer O, Concin H, Zitt E. Gamma-glutamyl-transferase is associated with incident hip fractures in women and men ≥ 50 years: a large population-based cohort study. Osteoporos. Int. 2022;33:1295-1307.
\rightarrow Gamma-GT as risk factor for hip fractures at age ≥ 50 independent from alcohol consumption, particularly in men

The Vorarlberg Health Monitoring \& Promotion Programme (VHM\&PP)

Summary

Strengths \& limitations:

- Population-based cohort, but arguably selection for more health-conscious participants (healthy volunteer effect)
- Prospective and standardized data acquisition, long follow-up times
- Vorarlberg as "epidemiologic model region": relatively isolated because of high mountains (east and south) and borders with non-EU countries (Switzerland, Liechtenstein) with a distinct social insurance system
- Repeated examinations, in particular in the base data set (General Health Examination)
- No new participants because dataset is closed since July 1st, 2005 (as of then, documentation by the Austrian Federation of Social Insurances)

Desired cooperation with other databases and cohorts, concerning:

- Data of the General Health Examination for Vorarlberg since July 1st, 2005
- Information on medication
- Biosamples, biological material

[^0]: Leiherer A, Ulmer H, Muendlein A, Säly C, Vonbank A, Fraunberger P, Föger B, Brandtner EM, Brozek W, Nagel G, Zitt E, Drexel H, Concin H. Value of total cholesterol readings earlier versus later in life to predict cardiovascular risk. EBioMed. 2021;67.
 \rightarrow Total cholesterol measured at 50 years of age on average vs. 15 years later is significantly more accurate to predict cardiovascular risk at an advanced age

